
How to Analyse Algorithms ?

As an algorithm is executed, it uses the computer’s 

central processing unit to perform operations and 

its memory to hold the program and data

Analysis of algorithm or performance 

evaluation refers to the task of determining how 

much computing time or storage an algorithm 

requires

Two major phases of performance evaluation

•A priori estimates- performance analysis

•A posteriori testing – performance measurements



How to describe algorithms?

Pseudocode conventions

1. Comments begin with //

2. Blocks are indicated by braces { }

3. Variables and their types are not declared- clear from 

context

4. Assignment statement  variable = expression

5. Arithmetic operators <,  ≤ , >,  ≥,  ≠, = and logical and, 

or , not

6. Loops while (condition do { statements }

for variable = value1 to value2 do { statements }

for variable = value1 downto value2 do { statements }

repeat { statements } until condition



7 Branching  

if condition then statement1 else statement2

case

{ condition 1: statement 1

…………………………..

else        : statement n+!

}

8 Input and output  by read value and write value

9. Procedure 

Algorithm Name ( parameter list)

{ body 

}



Algorithm comparison

A posteriori- implement and compare actual running 

times on different inputs

A priori- before implementing by counting number of 

expected steps

Algorithms are written to solve problems

Problem – sorting

Problem instance – sorting the array of size 10 

containing values 

5 112 23 67 12 45 11 3 25 54

Time and space requirements vary from one problem 

instance to another

The running time depends on input size



Usual measure for input size is number of inputs 

ex array size n in case of sorting problem

For some other problems input size can be length 

of the input such as prime number problem where 

input is only one number

As input size(n) grows , time taken increases

Order of growth of running time is more important

Algorithm 1 Algorithm 2       Algorithm 3

Input size step count step count step count

5 10 5 1

10 200 2000 8000

1000 2000 200000 800000

2n n2/5 n3/125

Is like n n2 n3



Space Complexity

The space complexity of an algorithm is the amount of 

memory it needs to run to completion

Space required by a program = code space ( instructions 

reside in memory + data space( space taken by variables 

and constants) + stack space

The space required has two components

Fixed component – it is independent of instance 

characteristics

It includes instruction space, space required by simple 

variables, aggregate variables and constants

Variable component – It depends on instance 

characteristics such as size of the input. It includes space 

needed by reference variables and recursion stack



The space required S(P)  of any algorithm P may 

therefore be written as

S(P)= C +  S P( instance characteristics) = C + S P (n) 

Where C is a constant and n is the input size

Algorithm Sum(a,n)  

{

s=0

for i=1 to n do

s= s + a[i]

return s

}

Space required= code space 

+ space required by variables

S P (n)   = space required by 

variables

S P (n)= n (for a)+ 1 (for n) + 

1 ( for s) + 1 ( for i)  + 2( for 0 

and 1)

S P (n) = n+ 5

S P (n) ≥ n 



Algorithm RSum(a,n)  //recursive

{

if n ≤ 0 then return 0;

else return RSum(a,n-1) + a[n]

}

Space required= code space + space required by 

variables + stack space

Recursion  Stack Space includes  space for formal 

parameters, local variables and return address = 1 (for 

n) + 1 ( for pointer to a) + 1 (for return address)

The depth of recursion is n+1

S P (n) ≥ 3(n+ 1)

Recursive algorithms have very high space complexity



Time Complexity

The time complexity of an algorithm is the amount of 

computer time it needs to run to completion

It is the sum of the compile time( fixed component) + run or 

execution time (depends on instance characteristics)

The execution time of a statement depends on type of 

operations involved ,values , the type of machine and the 

type of environment in which the statement is executed

For simplicity, we assume a constant amount of time is 

required to execute each simple statement  of our 

pseudocode

A loop involves condition checking that will take constant 

amount of time multiplied by total number of time the loop 

is executed

Each line will be treated as a  program step and execution 

time will be total step count 



Time Complexity of Insertion sort

Algorithm InsertionSort(a,n)

{

for  j =  2   to  n do            

rec =  A[ j ]

// insert rec in proper position 

i     =  j  - 1

while i > 0 and A[i] .key > rec. key 

do

{ 

A[ i + 1]  =    A[ i ]

// decrement

i      =    i  - 1

}

A[ i+ 1]  =      rec

}

cost       times

c1 n

c2          n-1

0

c3         n-1

n

c4  tj

j=2

n

c5           tj -1

j=2

n

c6          tj -1

j=2

c7      n-1



Time Complexity of Insertion sort

n          n               n

T(n)=c1n+c2(n-1)+c4(n-1)+c5 tj +c6(tj -1)+c7(tj -1)+c8(n-1)     

j=2 j=2            j=2

Even for inputs of a given size n, an algorithm’s           

running time may depend on other instance          

characteristics as the input values

Best Case

The array is already sorted

For each j, A[i].key is less than or equal to rec.key 

thus while loop will end immediately   tj=1

T(n)=c1n+c2(n-1)+c4(n-1)+c5(n-1) + c8(n-1)

=(c1+c2+c4+c5+c8)n-(c2+c4+c5+c8)

=an +b   

linear function of n



Worst Case

The array is sorted in reverse order

For each j, while loop will execute j times    

tj=j    ∑tj = n(n+1)/2 -1 and 

 tj -1 = n(n+1)/2 -1 –(n-1)= n(n-1)/2

T(n)=c1n+c2(n-1)+c4(n-1)+c5(n(n+1)/2 -1)+ 

c6 n(n-1)/2+c7 n(n-1)/2 + c8(n-1)

=((c5+c6+c7)/2) n2+

(c1+c2+c4- (c5+c6+c7)/2 +c8)n-(c2+c4+c5+c8)

=an2 +bn +c

Quadratic function of n      

The  worst case running time will be taken as the 

running time of the algorithm

•Algorithm will not take longer than worst case 

•It acts like an upper bound 

•For most algorithms worst case occurs fairly often and 

is same as average case running time         



Asymptotic Notation

O-notation is used to define an 

asymptotic upper bound 

Defn – A function f(n) is a member 

of O(g(n)) or we write f(n)= 

O(g(n)) or say f(n) is of O(g(n))

If there exists a positive constant 

c and n0 such that 

0 ≤ f(n) ≤ c g(n) for all n ≥ n0

0(g(n))= { f(n) : there exists a 

positive constant c and n0 such 

that 0 ≤ f(n) ≤ c g(n) for all n ≥ n0 }

f(n)

g(n)



➢ f(n) = n  Show that  f( n) is of O(n2)

n ≤ n2 for all n 

n ≤ cn2 for all n ≥ n0 where c=1 and n0 =1

➢ Show that 2 n2 – 3n is O(n2)

2 n2 – 3n ≤ c n2

2  - 3/n ≤  c            choose c=2 and n0 =1

2n 2 – 3n ≤ cn2 for all n ≥ n0 where c=2 and n0 =1

➢Show that 3 n2 + 5n is O(n2)

3 n2 +5n ≤ c n2

3 + 5/n ≤  c            choose c=4 and n0 =5

3n2 + 5n ≤cn2 for all n ≥ n0 where c=4 and n0 =5

➢Is 2 n+1 = 0(2n)? 

2 n+1 = 2 n x 2  for all n

2 n+1 ≤ c 2 n for all n ≥ n0 where c = 2 and n0 =1



➢Is 2 2n = 0(2n)? 

2 2n = ( 2 2 )n = 4 n > 2 n for all n

2 2n is not of O(2 n)

➢ If f(n) = am nm + ……+a1n+a0, then f(n)=O(nm)

f(n)   = am nm + ……+a1n+a0

≤ |am|nm + ……+|a1 | n+ |a0|

n

≤ nm ∑ |ai| n i-m

i=0

n

≤ nm ∑ |ai|            for n ≥ 1

i=0

For the statement f(n) =O(g(n)) to be informative, 

g(n) should be as small a function of n one can come 

up with for which f(n)=O(g(n)))

We never say 3n+ 2=O(n2) or 3n+2=O(3n) though it is 

correct but we say 3n+2 =O(n) 



Ω-notation is used to define an 

asymptotic lower bound 

Defn – A function f(n) is a member of 

Ω(g(n)) or we write f(n)= Ω(g(n)) or say 

f(n) is of Ω(g(n))

If there exists a positive constant c and 

n0 such that 

0 ≤ c g(n) ≤ f(n) for all n ≥ n0

g(n)

f(n)

O-notation is used to describe an upper bound for the 

worst case running time of an algorithm 

Ω-notation is used to describe a lower bound for the best 

case running time of an algorithm

Insertion sort is O(n2) and is Ω(n)

Ω(g(n))= { f(n) : there exists a positive constant c and n0

such that 0 ≤ c g(n) ≤ f(n) for all n ≥ n0 }



There is separate notation for asymptotically 

tight bounds

θ-notation is used to define an asymptotic tight 

bound 

Defn – A function f(n) is a member of θ(g(n)) 

or we write f(n)= θ(g(n)) or say f(n) is of θ(g(n))

If there exists a positive constant c and n0

such that 

0 ≤ c1 g(n) ≤ f(n) ≤ c2 g(n) for all n ≥ n0

θ(g(n))= { f(n) : there exists a positive constant 

c and n0 such that 0 ≤ c1 g(n) ≤ f(n) ≤ c2 g(n)  

for all n ≥ n0 }

f(n) is equal to g(n) within a constant factor

The function f(n) must be nonnegative



•Show that algorithm to find the maximum in an 

array of size n is  θ(n)

Algorithm max(A,n)

{         max=A[1]              

i=2

while i <= n  do

if A[i] > max

max= A[i]

return max

}

C1     1

C2     1

C3     n

C4     n-1

C5      t

Best case time is when max lies in first place t=0

T(n) = c1+c2+c3n+c4(n-1)=  Ω (n)

Worst case time occurs when array is sorted t=n

T(n) = c1+c2+c3n+c4(n-1) +c5(n-1)= O( n)

Max algorithm is  θ(n)



•The running time of an algorithm is  θ(g(n)) if and 

only if its worst case running time is O(g(n)) and its 

best case running time is Ω(g(n))

•Let f(n) and g(n) be asymptotically nonnegative 

functions prove that max(f(n), g(n)) = θ (f(n) + g(n))

f(n) ≤ max(f(n),g(n)) and  g(n) ≤ max(f(n),g(n))

f (n) + g(n)  ≤  2 max(f(n), g(n)) 

If f(n) is the maximum then

f(n) + g(n) ≥ f(n) = max(f(n),g(n))

If g(n) is the maximum then

f(n) + g(n) ≥ g(n) = max(f(n),g(n))

Thus    ½(f(n) +g(n))  ≤ max(f(n),g(n) ≤  f(n) +g(n)

c1f(n) +g(n))  ≤ max(f(n),g(n) ≤  c2( f(n) +g(n))

for all n >1 where c1 = ½ and c2 =1



o-notation is used to define an asymptotic upper bound 

which is not asymptotically tight

Defn – A function f(n) is a member of o(g(n)) or we 

write f(n)= o(g(n)) or say f(n) is of (Little “oh”) o(g(n))

If for any positive constant c > 0, there exist a constant 

n0 > 0 such that 

0 ≤ f(n) < c g(n) for all n ≥ n0

2n=O(n2) 2n=o(n2)  2n2 =O(n2) but 2n2 ≠ o(n2)

lim     f(n) / g(n) = 0  

n→ ∞



ω-notation is used to define an asymptotic lower 

bound which is not asymptotically tight

Defn – A function f(n) is a member of ω(g(n)) or we 

write f(n)= ω (g(n)) or say f(n) is of (little omega)  

ω(g(n))

If for any positive constant c > 0, there exist a constant 

n0 > 0 such that 

0 ≤ c g(n) < f(n) for all n ≥ n0  

lim   f(n) / g(n) = ∞ or         lim      g(n)/f(n) = 0

n→ ∞ n→ ∞

There is anology between asymptotic notation and 

usual comparisons

O  ≈ ≤ upper bound  o   ≈    < strict upper bound

Ω  ≈ ≥    lower bound  ω ≈   >  strict lower bound

θ ≈    =   tight bound 

θ(n) = any linear function θ(n2)= any quadratic function



Asymptotic notation satisfy following properties

Transitivity

All asymptotic notations O, o, , θ , ω are transitive

Reflexivity  O, , θ are reflexive

Symmetry  θ is symmetric

Transpose symmetry

f(n) = O(g(n)) if and only if g(n) =  (f(n)

f(n) = o(g(n)) if and only if g(n) = ω (f(n)

Trichotomy is not true i.e for any two functions f(n) 

and g(n) neither f(n) = O(g(n)) nor f(n) =  (g(n) 

holds



➢Consider  the following functions of n 

f1(n) = n2

f2(n) = n2 + 1000n

f3(n) =  n if n is odd

n3 if n is even

f4(n) = n if n  100

n3 if  n > 100

Find i and j such that fi(n) is O( fj(n)) 

and or fi(n) is  Ω ( fj(n))

Note that f2(n) is neither O(f3(n)) nor Ω (f(3(n))

The above  example shows that Trichotomy is not 

true for asymptotic notation 



The rates of growth of polynomials and exponentials 

can be related by the following .

For all constants a and b , a > 1

n b = O( a n)

Any positive exponential function grows faster than 

any polynomial

log b n = ( log n)b = o( n a ) for any constant a > 0

Any positive polynomial function grows faster than any 

polylogarithmic function

Using Stirling’s approximation  following can be 

prooved

n ! = o(n n)   - nn grows faster than factorial

n! = O(2n)  - factorial grows faster than exponential



• Order the following functions by growth rate and justify

a)2n b) n c)  log n d) log (log n) e) log 2 n 

f) n / logn g) n  log n   h)  (1/3)n i) ( 3/2)n

j)  17  k) n!   l) n4 m) nn

17 is bounded above by constant always irrespective of n 

it is O(1)

(1/3)n --> 0 as n increases , it is bounded above by 1/3

And bounded below by 0 it is O(1)

log (logn) grows slower than logn

log n  i.e log e n grows slower than log 2 n

n grows slower than 2n

n grows slower than n  log n 

lim n log n/2n= lim log n /n = lim (1/n)/(1/2n )

= lim 1/ n =0

n  log2 n  grows slower than 2n

2n grows slower than (3/2)n , (3/2)n grows slower than n!

n! grows slower than nn



Given any problem we look for best complexity 

algorithm

Best algorithm would  be of constant order

Irrespective of input size it always takes same time

The algorithm is of O(1)

searching problem

Given an array containing n elements we are looking 

for an integer x

There are two instance characteristics on which the 

complexity of algorithm will depend

n-number of integers and 

x –the number to be searched 



1 Sequential search

Algorithm SeqSearch(A, n, x)

{             i=1

while i <= n 

{    if( A[i] =x ) then  return i                

i=i+1          }

return -1

}

Best case – searching for first element   - O(1)

Worst case- searching for element not present – O(n)

Worst case occurs more often-

average  running time of sequential search is  O(n)



2 Sequential search on sorted file

Algorithm SeqSearchOnSorted(A, n, x)

{             i=1

while i <= n and A[i] <x

i=i+1 

if ( A[i] =x) then return i

return -1  }

Best case – searching for first element   - O(1)

Worst case- searching for number greater than or equal 

to last element– O(n)

The time for other cases varies between 1 to n – almost 

all are equally likely

Average running time O(n/2)



3 Binary Search on sorted file

Algorithm  BinarySearch(A, m,n, x)

{  if ( m=n) then

{ if( A[m]=x then

return i 

else  return -1

}

else

{ mid=(m+n)/2

if A[mid]=x  then return mid

else if( A[mid] < x ) then

return BinarySearch(A, mid+1,n,x)

else return BinarySearch(A, m,mid-1,x)

} }   



Best case when n=1 for any x   – O(1)

Binary search suddenly reduces the file to half the size so next we 

are searching in a file of half the size. This repeated division 

quickly reduces the file size to 1

The time taken by the algorithm can be expressed by a recurrence 

relation                          a        n=1

T(n) =    T(n/2 )+b  n >1

=   T(n/2) +b

=  T(n/4) + b +b

= T(n/4) + 2b

= T(n/8) +3b

=T(n/2k)  + kb                n=2k

= T(1) + kb

= a+ b log 2 n

= O( log 2 n)                                   



4 Ternary search- It is a modification on binary search- The file is 

divided into three parts and with two comparisons we will able to 

decide which one third part one should take up for further search

With two comparisons file size is reduced to one third and 

recurrence relation for running time is

a   n=1

T(n) = T(n/3) + 2b  n > 1

=  T(n/3) + 2b

=T( n/9) +4b

= T( n/3k) + 2 kb             n=3k

= a+ 2b log 3 n

= O( 2 log 3 n) = O( log 3 n)

2 log 3 n= 2 log 2 n / log  2 3= 2 log 3 2 log 2 n

= log 3 4 log 2 n

> log 2 n



5 Hash search- The file is kept in hashed order

The record is kept at the place given by the hash function- number 

of records n is fixed

Given x- use hash function to compute address- go to the position 

and record is found

For any x- time is constant- time taken for computing address by 

hashing function- O(1)

Sequential search O(n)

Ternary Search O( 2 log 3 n)

Binary Search  O(log 2 n)

Hash search  O(1)

Sorting problem- to sort an array of n records

1. Insertion sort    Best case  O(n)

Worst case O(n2)



2. Heap sort

Heap data structure is an array that can be viewed as an 

almost complete binary tree

The binary tree is completely filled in all levels except 

possibly the lowest, which is filled from left up to a point

Heaps satisfy heap property 

For Max heap every i other than the root , A[parent[i]] ≥ A[i]  

( parent of ith node is at [i/2]). 

For Min heap every i other than the root , A[parent[i]] ≤ A[i]

Shift down and Shift up are the routines used to maintain 

heap property

If the left and right subtrees of ith node are heaps but ith 

node is violating heap property then shift down pushes A[i] 

to correct position in the tree so that A[i] becomes a heap



Algorithm ShiftDown(A,i, n)

{ left=2 * i

right = 2*i+1

If left < n and A[left> A[i] then

largest = left               // choose the largest as left

else largest = i        // or parent is the largest

If right < n and A[right> A[largest] then

largest = right  //choose the largest as right

If largest ≠ i  then // if any child is greater

exchange (A[i]) and A[largest])// swap 

shiftdown(A , largest) // recursive call for the affected node

}

Since a heap of n elements is almost complete binary tree, 

its height is  θ(log n). The no of recursive calls depends on 

height hence shiftdown is O( logn)



To build a heap for a given array, we can use 

shiftdown(heapify) procedure in a bottom up manner. 

The order should be such that the process guarantees 

that the children are already heaps. 

Thus we start with last possible parent which is 

obviously at position n/2

Algorithm BuildHeap(A.n)

{ for i= n/2 downto 1

shiftdown(A,i,n) }

The running time of this algorithm is O(nlogn)

Heapsort starts with building a heap. 

The maximum element in first position is then swapped 

with the element in last position. 



Since this disturbs the heap property, shiftdown is called on 

the array from which last element is removed as it is in 

correct position. 

This is repeated till all elements are in correct positions

Algorithm Heapsort(A, n)

{           BuildHeap(A, n)

for i= n downto 2

{ exchange( A[1], A[i])

shiftdown( A, I, n-1)}

} 

Heapsort takes time nlogn + (n-1) logn as there are n-1 

calls to shiftdown which is of order logn

Heapsort is O(nlogn)



Priority Queue – It is a queue in which elements 

are inserted in any order but leave the queue in 

order of priority( the element with maximum value 

will leave first).

The queue need to be maintained with maximum 

element at the front and in sorted order

Delete operation removes front element – O(1)

Insert operation need to insert the element so that 

array is sorted and in worst case may require n 

comparisons-O(n)

Deletion is faster but insertion is slow. Deletion is not 

as fast as it looks as elements in an array will have 

to be shifted up( or use a circular queue)



By Mrs. S. C. Shirwaikar

Priority queue can be implemented as a heap

Deletion will remove the highest priority element at 

A[1]. This creates a hole at top which is filled with 

last element. This disturbs heap property at top and 

can be set right by using shift down

Deletion is O(logn)

Insertion can insert in the last position as that is the 

only place available. This disturbs heap property and 

can be set right using a shift up operation which is 

also of logn

Insertion is O(logn)

Priority queue implemented as a heap is a very 

efficient data structure in which both insertion and 

deletion are of O(logn)



Algorithm shiftUp( A,n)

{ i=n

value = A[i]

While i >1 and A[i/2] < value do

{

A[i] = A[i/2]

i= i/2

}

A[i] =value

}

The running time of shiftUp is O(logn), since the 

path traced from the new leaf at n to the root is of 

length O(logn)



3. Counting sort- linear order sorting algorithm

It assumes that input elements are in the range 1 to 

k for an integer k where k is much less than n or 

k=O(n) (elements are repeated)

An array count of size k is used to store how many 

times each element occurs. This information is used 

to put elements in proper position. This requires an 

array b of same size as A to hold the sorted output.

Algorithm CountingSort(A,n)

{ for i=1 to k do

count[i]=0                   // O(k)

for j= 1 to n do

count(A[j])  =count (A[j]) + 1  // O(n)



for i=2 to k do

c[i]=c[i]+c[i-1]              // O(k)

for j= n downto 1

B[c[A[j]] =A[j]   // c[A[j]] gives the position where 

// A[j]  is to be  inserted in B

c[A[j]]=c[A[j]]-1               // O(n)

Counting sort is O(n) . It has a very high space 

complexity

Two properties are important for sorting algorithms

1. In–place- same array is used to store sorted output

2. Stable-numbers with same value appear in same 

relative order as in input

Counting sort is stable but is not an In-place algorithm

Heap sort is not stable but is an In-place algorithm

Insertion sort is both stable and an in place algorithm



Radix sort

Each element in the array to be sorted has d digits where 

digit 1 is the lowest order digit while dth digit is the 

highest order digit

Algorithm  RadixSort(A,n,d)

{

for  i = 1 to d do

Sort (A, n, i) 

// sort array A on digit i using any stable efficient sorting

// algorithm

}

Since each digit is in the range 0 to 9 , counting sort is the 

obvious choice

Each sorting pass takes θ(n) time and there are d passes 

so the total time for radix sort is θ(dn)  where d is 

constant 

RadixSort runs in linear time i.e θ(n) but not In-place



Higher Order Algorithms

Matrix multiplication algorithm is O(n3)

Algorithm Matrixmult( A, B, C, n)

{

for i=1 to n do

{  for j=1 to n do

{   sum=0

for k=1 to n do

sum= sum+ A[i, k]* B[k, j]

C[i, j] = sum

}

}

}



Consider the algorithm to generate n th Fibonacci

It can written both as a recursive algorithm as also an iterative 

algorithm

Algorithm RecurFibonacci (n)

{

if n=1 return 0;

if n=2 return 1;

return RecurFibonacci(n-1) + RecurFibonacci(n-2)

}

The running time of this algorithm T(n) can be expressed as a 

recurrence relation

T(n) =   c if n ≤ 2

T(n-1)+Tn-2)  if n >2

T(n) = T(n-1) +T(n-2) ≤ 2 T(n-1)

≤ 2 ( 2 T(n-2)) = 22 T(n-2)

≤  2 k T(n-k)

≤  2 k T(1)= 2 k c       when n-k = 2

= 2 (n+2) c  k=n+2

=O(2n)



Fibonacci algorithm is of exponential order

Recursive algorithms have very high space complexity

Algorithm IterativeFibonacci (n)

{

if n=1 return 0;

if n=2 return 1;

f1=0

f2 =1

for i=3 to n do

{ f3 = f2+f1

f1=f2

f2=f3 }

return f3

}

Each of the steps taking constant time are executed in worst 

case n-2 times

The running time of this algorithm is O(n-2)=O(n)

Note that n is not the input size but k=log n is the input size 

and in terms of k the algorithm is O(2k)



Tower of Hanoi

A B C A B C

Before After

The disks of decreasing size are stacked on the tower in 

decreasing order of size bottom to top. The disks are to be 

moved from tower A to tower C using  tower B for 

intermediate storage. The disks are heavy, they can be 

moved only one at a time. At no time can a disk be on top 

of a smaller disk

A very simple solution using recursion can be given as 

follows . First move n-1 disks to tower B using C. Move the 

bottom disk to C. Now shift n-1 disks from B to C using A



Tower of Hanoi

A B C

After

A B C

Before

A B C

After

A B C

Before



Algorithm TowerOfHanoi(n, A, B, C)

{// Moving n disks from A to C using B

If n ≥ 1 then

{

TowerOfHanoi( n-1, A, C, B)

// physically move top disk from tower A to C

write(  “Move top disk from”, A, “ to top of tower”,C)

TowerOfHanoi(n-1,B, A, C)

}

}

The recurrence relation for running time 

T(n) =   a                  if n < 1

2T(n-1) + c   if n ≥ 1

T(n) = 2T(n-1) + c 

= 2 2T(n-2) + (2 +1)c

= 2kT(n-k) +(2k+….+2+1)c         n-k=1

= 2(n-1)a + c(2n-1) = O(2n)



Permutation problem- Given a set n  1 of elements , the 

problem is to print all possible permutations of this 

set

If the set is { a, b, c} The permutations are

{ {a,b,c},{a,c,b},{b,a,c}, {b,c,a}, {c,b,a}, {c,a,b}}

In case of four elements, the permutations area 

followed by all permutations of {b,c,d}

b followed by all  permutations of {a,c,d}

c followed by all  permutations of {a,b,d}

d followed by all  permutations of {a,b,c}

The algorithm can be written recursively as if we know 

how to solve it for n-1 elements ,we can solve for n 

elements

Algorithm Perm (A,k,n)

{//  A is the array containing n elements

If k=n then writeA( A) // writeA writes all n elements A

else



for i=k to n do

{ swap ( A[k], A[i]) // swap A[k] with A[i]

Perm(A,k+1,n)

swap(A[i],A[k]);

} }    

The recurrence relation for running time is

T(n) = 1  if n=1

(n-1)(T(n-1) + b )

T(n) = n-1T(n-1) + b

= n-1((n-2)(T(n-2) +b) +b)

= (n-1)(n-2)….T(n-k) +b((n-1)+(n-1)(n-2)+ 

…….+(n-1)(n-2)…(n-k+1))

= (n-1)(n-2)….1  + b(((n-1)+..+(n-1)(n-2)..1)   n=k

≤ n-1! + b n( (n-1)!) = O(n!)

Since there are n! permutations and it has to write all 

the permutations any algorithm to generate 

permutations is  Ω(n!)



THANK YOU!!!


