Study of Design Pattern

a design pattern is a general repeatable solution to a
commonly occurring problem in software design.

A design pattern isn't a finished design that can be
transformed directly into code

There are mainly three types of design patterns
1)Creational: These design patterns are all about class
instantiation or object creation. ...

2)Structural: These design patterns are about organizing
different classes and objects to form larger structures and
provide new functionality. ...

3)Behavioral:

AUl WN =

Creational Pattern

Creational patterns provide various object creation mechanisms,
which increase flexibility and reuse of existing code. In software
engineering.

Types of creational design patterns

There are following 6 types of creational design patterns.

. Factory Method Pattern
. Abstract Factory Pattern
. Singleton Pattern

. Prototype Pattern

. Builder Pattern

. Object Pool Pattern

https://www.javatpoint.com/factory-method-design-pattern
https://www.javatpoint.com/abstract-factory-pattern
https://www.javatpoint.com/singleton-design-pattern-in-java
https://www.javatpoint.com/prototype-design-pattern
https://www.javatpoint.com/builder-design-pattern
https://www.javatpoint.com/object-pool-pattern

UML for Factory Method Pattern

When to Use Factory Method
Design Pattern

» When the implementation of an interface or an abstract class Is expected to
change frequently

» When the current implementation cannot comfortably accommodate new
change

» When the Initialization process Is relatively simple, and the constructor only
requires a handful of parameters

Factory Method Design Pattern

Button okButton = createButton()
okButton.onClick(closeDialog)
okButton.render()

o) «interface»
Button
____________________ 9
+ render() + render()
+ createButton(): Button + onClick()
I | i T :
WindowsDialog WebDialog Windows HTML
Button Button
+ createButton(): Button + createButton(): Button

return new WindowsButton()

Abstract Factory Design Pattern

. Provide an interface for creating families of
related or dependent objects without
specifying their concrete classes.

. A hierarchy that encapsulates: many
possible "platforms”, and the construction
of a suite of "products”.

* The new operator considered harmful

Structure

AbstractFactory — declares an interface for operations that
create abstract products.

ConcreteFactory — implements operations to create concrete
products.

AbstractProduct — declares an interface for a type of product
objects.

Product — defines a product to be created by the
corresponding ConcreteFactory; it implements the
AbstractProduct interface.

Client — uses the interfaces declared by the AbstractFactory
and AbstractProduct classes.

Abstract Factory

winterfaces
Class1 AbstractProductOne
oy
| []
ProductOnePlatformOne ProductOnePlatformTwo
sinlerdaces
AbstractPlatform
[I \l/
PlattormOne PlatformTwo «inferfaces
AbstractProductTwo
- =4 +makeProductOne()
i |+makeProductTwol() ZF.
- : [1
: ; ProductTwoPlatformOne ProductTwoPlatformTwo
return new ProductOneFlatformTwoe); -
return new ProductTwoPlatformTwo)

Abstract Factory classes

StampingEquipment

<=---{ Client (parts list for Model) |

+stampPart()

N

| Model3Wheels | Mocel3Hood | Model3Door
| Model2Wheels | Model2Hood | Mocdel2Door

Model1Wheels Model1Hood Modell Door
+stampWheel() +stampHood() +stampDoor()

L

Implementation

We are going to create a Shape interface and a
concrete class implementing it. We create an abstract
factory class AbstractFactory as next step. Factory
class ShapeFactory is defined, which extends
AbstractFactory. A factory creator/generator class
FactoryProducer Is created.

AbstractFactoryPatternDemo, our demo class uses
FactoryProducer to get a AbstractFactory object. It will
pass information (CIRCLE / RECTANGLE / SQUARE
for Shape) to AbstractFactory to get the type of object
It needs.

