
Study of Design Pattern

 a design pattern is a general repeatable solution to a
commonly occurring problem in software design.
A design pattern isn't a finished design that can be
transformed directly into code

There are mainly three types of design patterns
1)Creational: These design patterns are all about class
instantiation or object creation. ...

2)Structural: These design patterns are about organizing
different classes and objects to form larger structures and
provide new functionality. ...

3)Behavioral:

Creational Pattern

• Creational patterns provide various object creation mechanisms,
which increase flexibility and reuse of existing code. In software
engineering.

• Types of creational design patterns

• There are following 6 types of creational design patterns.

1. Factory Method Pattern

2. Abstract Factory Pattern

3. Singleton Pattern

4. Prototype Pattern

5. Builder Pattern

6. Object Pool Pattern

https://www.javatpoint.com/factory-method-design-pattern
https://www.javatpoint.com/abstract-factory-pattern
https://www.javatpoint.com/singleton-design-pattern-in-java
https://www.javatpoint.com/prototype-design-pattern
https://www.javatpoint.com/builder-design-pattern
https://www.javatpoint.com/object-pool-pattern

UML for Factory Method Pattern

When to Use Factory Method

Design Pattern

 When the implementation of an interface or an abstract class is expected to

change frequently

 When the current implementation cannot comfortably accommodate new

change

 When the initialization process is relatively simple, and the constructor only

requires a handful of parameters

Factory Method Design Pattern

Abstract Factory Design Pattern

 Provide an interface for creating families of

related or dependent objects without

specifying their concrete classes.

 A hierarchy that encapsulates: many

possible "platforms", and the construction

of a suite of "products".

• The new operator considered harmful

Structure

 AbstractFactory — declares an interface for operations that

create abstract products.

 ConcreteFactory — implements operations to create concrete
products.

 AbstractProduct — declares an interface for a type of product
objects.

 Product — defines a product to be created by the
corresponding ConcreteFactory; it implements the
AbstractProduct interface.

 Client — uses the interfaces declared by the AbstractFactory
and AbstractProduct classes.

Abstract Factory

Abstract Factory classes



Implementation

 We are going to create a Shape interface and a

concrete class implementing it. We create an abstract
factory class AbstractFactory as next step. Factory
class ShapeFactory is defined, which extends
AbstractFactory. A factory creator/generator class
FactoryProducer is created.

 AbstractFactoryPatternDemo, our demo class uses
FactoryProducer to get a AbstractFactory object. It will
pass information (CIRCLE / RECTANGLE / SQUARE
for Shape) to AbstractFactory to get the type of object
it needs.

