
Study of Design Pattern

 a design pattern is a general repeatable solution to a
commonly occurring problem in software design.
A design pattern isn't a finished design that can be
transformed directly into code

There are mainly three types of design patterns
1)Creational: These design patterns are all about class
instantiation or object creation. ...

2)Structural: These design patterns are about organizing
different classes and objects to form larger structures and
provide new functionality. ...

3)Behavioral:

Creational Pattern

• Creational patterns provide various object creation mechanisms,
which increase flexibility and reuse of existing code. In software
engineering.

• Types of creational design patterns

• There are following 6 types of creational design patterns.

1. Factory Method Pattern

2. Abstract Factory Pattern

3. Singleton Pattern

4. Prototype Pattern

5. Builder Pattern

6. Object Pool Pattern

https://www.javatpoint.com/factory-method-design-pattern
https://www.javatpoint.com/abstract-factory-pattern
https://www.javatpoint.com/singleton-design-pattern-in-java
https://www.javatpoint.com/prototype-design-pattern
https://www.javatpoint.com/builder-design-pattern
https://www.javatpoint.com/object-pool-pattern

UML for Factory Method Pattern

When to Use Factory Method

Design Pattern

 When the implementation of an interface or an abstract class is expected to

change frequently

 When the current implementation cannot comfortably accommodate new

change

 When the initialization process is relatively simple, and the constructor only

requires a handful of parameters

Factory Method Design Pattern

Abstract Factory Design Pattern

 Provide an interface for creating families of

related or dependent objects without

specifying their concrete classes.

 A hierarchy that encapsulates: many

possible "platforms", and the construction

of a suite of "products".

• The new operator considered harmful

Structure

 AbstractFactory — declares an interface for operations that

create abstract products.

 ConcreteFactory — implements operations to create concrete
products.

 AbstractProduct — declares an interface for a type of product
objects.

 Product — defines a product to be created by the
corresponding ConcreteFactory; it implements the
AbstractProduct interface.

 Client — uses the interfaces declared by the AbstractFactory
and AbstractProduct classes.

Abstract Factory

Abstract Factory classes

Implementation

 We are going to create a Shape interface and a

concrete class implementing it. We create an abstract
factory class AbstractFactory as next step. Factory
class ShapeFactory is defined, which extends
AbstractFactory. A factory creator/generator class
FactoryProducer is created.

 AbstractFactoryPatternDemo, our demo class uses
FactoryProducer to get a AbstractFactory object. It will
pass information (CIRCLE / RECTANGLE / SQUARE
for Shape) to AbstractFactory to get the type of object
it needs.

