
Overloading stream insertion and Extraction(< >) operators in C++

In C++, stream insertion operator “<<” is used for output and extraction

operator “>>” is used for input.

We must know following things before we start overloading these

operators.

1) cout is an object of ostream class and cin is an object istream class

2) These operators must be overloaded as a global function. And if we

want to allow them to access private data members of class, we must

make them friend.

Why these operators must be overloaded as global?

In operator overloading, if an operator is overloaded as member, then it

must be a member of the object on left side of the operator.

For example, consider the statement “ob1 + ob2” (let ob1 and ob2 be

objects of two different classes). To make this statement compile, we

must overload „+‟ in class of „ob1‟ or make „+‟ a global function.

The operators „<<' and '>>' are called like 'cout << ob1' and 'cin >> ob1'.

So if we want to make them a member method, then they must be made

members of ostream and istream classes, which is not a good option

most of the time. Therefore, these operators are overloaded as global

functions with two parameters, cout and object of user defined class.

//Declaration

friend ostream& operator << (ostream&, const X&);

//Definition

ostream& operator <<(ostream& stream, const X& obj)

{

 //output fields of the object using obj and the dot operator.

 ……..

 return stream;

}

class Complex

{

private:

 int real, imag;

public:

 Complex(int r = 0, int i =0)

 { real = r; imag = i; }

friend ostream & operator << (ostream &out, const Complex &c);

 friend istream & operator >> (istream &in, Complex &c);

};

ostream & operator << (ostream &out, const Complex &c)

{

 out << c.real;

 out << "+i" << c.imag << endl;

 return out;

}

istream & operator >> (istream &in, Complex &c)

{

 cout << "Enter Real Part ";

 in >> c.real;

 cout << "Enter Imagenory Part ";

 in >> c.imag;

 return in;

}

int main()

{

 Complex c1;

 cin >> c1;

 cout << "The complex object is ";

 cout << c1;

 return 0;

}

Output:

Enter Real Part 10

Enter Imagenory Part 20

The complex object is 10+i20

String Manipulation Using Operator Overloading

Manipulating of strings in C++ by operator overloading using character

arrays, pointers and string functions. There are no operators for

manipulating the strings. There are no direct operator that could act upon

the strings or manipulate the strings.

Although there are these limitations exist in C++, it permits us to create

our own definitions of operators that can be used to manipulate the

strings very much similar to the decimal number. We can manipulate

strings by operator overloading as this is not achieved by operators only.

For example :

We should be able to use statement like this in manipulating strings using

operator overloading -

string3 = string1 + string2;

C++ provides following two types of string representations −

The C-style character string.

The string class type introduced with Standard C++.

The C-style character string originated within the C language and

continues to be supported within C++. This string is actually a one-

dimensional array of characters which is terminated by a null character

'\0'. Thus a null-terminated string contains the characters that comprise

the string followed by a null.

The following declaration and initialization create a string consisting of

the word "Hello". To hold the null character at the end of the array, the

size of the character array containing the string is one more than the

number of characters in the word "Hello."

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

If you follow the rule of array initialization, then you can write the above

statement as follows −

char greeting[] = "Hello";

Sr. No Function & Purpose

1 strcpy(s1, s2);

Copies string s2 into string s1.

2 strcat(s1, s2);

Concatenates string s2 onto the end of string s1.

3 strlen(s1);

Returns the length of string s1.

4 strcmp(s1, s2);

Returns 0 if s1 and s2 are the same; less than 0 if s1<s2;

greater than 0 if s1>s2.

5 strchr(s1, ch);

Returns a pointer to the first occurrence of character ch

in string s1.

6 strstr(s1, s2);

Returns a pointer to the first occurrence of string s2 in

string s1.

#include <iostream>

using namespace std;

int main ()

{

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

 cout << "Greeting message: ";

cout << greeting << endl;

return 0;

}

The String Class in C++

The standard C++ library provides a string class type that supports all

the operations mentioned above, additionally much more functionality.

#include <iostream>

#include <string>

using namespace std;

int main ()

{

 string str1 = "Hello";

 string str2 = "World";

 string str3;

 int len ;

// copy str1 into str3

 str3 = str1;

 cout << "str3 : " << str3 << endl;

// concatenates str1 and str2

 str3 = str1 + str2;

 cout << "str1 + str2 : " << str3 << endl;

// total length of str3 after concatenation

 len = str3.size();

 cout << "str3.size() : " << len << endl;

 return 0;

}

OUTPUT:

str3 : Hello

str1 + str2 : HelloWorld

str3.size() : 10

Runtime Polymorphism

The this pointer is an implicit parameter to all member functions.

Therefore, inside a member function, this may be used to refer to the

invoking object.

Friend functions do not have a this pointer, because friends are not

members of a class. Only member functions have a this pointer.

Syntax: class_name *this;

Polymorphism

Compile time

Polymorphism

Run Time

Polymorphism

Operator

Overloading Function

Overloading

Virtual

Functions

#include <iostream>

using namespace std;

class Box

{

 public:

// Constructor definition

 Box(double l = 2.0, double b = 2.0, double h = 2.0)

 {

 cout <<"Constructor called." << endl;

 length = l;

 breadth = b;

 height = h;

 }

 double Volume()

 {

 return length * breadth * height;

 }

 int compare(Box box)

 {

 return this->Volume() -> box.Volume();

 }

 private: double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

int main(void)

{

 Box Box1(3.3, 1.2, 1.5); // Declare box1

 Box Box2(8.5, 6.0, 2.0); // Declare box2

 if(Box1.compare(Box2))

 {

 cout << "Box2 is smaller than Box1" <<endl;

 }

else

 {

 cout << "Box2 is equal to or larger than Box1" <<endl;

 }

 return 0;

}

OUTPUT:

Constructor called.

Constructor called.

Box2 is equal to or larger than Box1

Pointer to objects:
Pointers do access to class members. A pointer can point to an object

created by class.

e.g. employee x;

Defining it with pointer would be,

employee x;

employee *ptr = &x;

We can refer in two ways:

i) By using the dot operator and object

ii) By using the arrow i=operator and the object pointer

(*ptr).show()

employee *ptr = new employee;

ptr -> show();

#include <iostram.h>

Class employee

{

 int code;

 float salary;

 public:

 void getdata(int a, float b)

 {

 code=a;

 salary=b;

 }

 void show(void)

 {

 cout<<“Code:”<<code<<“\n”;

 cout<<“Salary:”<<salary<<“\n”;

 }

};

int main()

{

 employee *p = new employee[2];

 employee *d =p;

 int x,i;

 float y;

 for (i=0;i<2;i++)

 {

 cout<<“Input code and salary for employee”<<i+1;

 cin>>x>>y;

 p ->getdata(x,y);

 p++;

 }

 for(i=0;i<2;i++)

 {

 cout<<“Employee:”<<i+1<<“\n”;

 d ->show(); d++;

 } return 0; }

OUTPUT:

Input code and salary for employee for employee1 30 8000

Input code and salary for employee for employee2 80 18000

Employee: 1

Code:30

Salary: 8000

Employee: 2

Code:80

Salary: 18000

Pointers to derived classes:

C++ allows a pointer in base class to point to either a base class object

or to any derived class object.

e.g.

class baseA

{

 …..

 ……

};

class derived : public baseA

{

 …….

 ….

};

void main()

{

 baseA *ptr; //pointer to baseA

}

#include<iostream.h>

class baseA

{

 public:

 int b;

 void show()

 {

 cout<<"b="<<b<<"\n";

 }

};

class derivedD:public baseA

{

 public:

 int d;

 void show()

 {

 cout<<"b="<<b<<"\n"<<"d="<<d<<"\n";

 }

};

int main()

{

 baseA *bptr;

 baseA base;

 bptr=&base;

 bptr->b=100;

 cout<<"bptr points to base object\n";

 bptr->show();

//derived class

 derivedD derived;

 bptr=&derived;

 bptr->b=200;

 cout<<"bptr now points to derived object\n";

 bptr->show();

//accessing d using a pointer of type derived class

derivedD

 derivedD *dptr;

 dptr=&derived;

 dptr->d=300;

 cout<<"dptr is derived pointer\n";

 dptr->show();

 cout<<"using ((derivedD *) bptr\n";

 ((derivedD *)bptr)->d=400;

 ((derivedD *)bptr)->show();

 return 0;

}

