Course Outcomes of Biotechnology

Course:	BSC	Outcomes
BIOTECHNO	DLOGY	
Course	Course code and	Learning Outcome
	Title	
BSc. BT	BBt-101	This course presents an introduction to the Periodic
FY	Fundamentals of	Table, stoichiometry, chemical states, chemical
	Chemistry-I	equilibria, Acid & base, oxidation & reduction
		reactions, chemical kinetics, inorganic nomenclature and chemical bonding.
	BBt-102	This course provides a thorough introduction to the
	Fundamentals of	principles and methods of physics for students who
	Physics	have good preparation in physics and mathematics.
		Emphasis is placed on problem solving and
		quantitative reasoning. This course covers
		Newtonian mechanics, special relativity,
		gravitation, thermodynamics, and waves.
	BBt-103	This course presents the chemical reactions or
	Biochemistry I	metabolic functions in the living system and their
		regulations. This subject will be useful to make the
		student to understand the concept of biochemical
		regulations. On successful completion of the subject
		study the students will understand Basic Structure
	DD4 104	and metabolism of Biomolecules.
	BBI-104 Diophysics	and laws of physics to biological structure and
	Diophysics	functioning and to understand the principles and
		working of instruments commonly used to study
		biological material
	BBt-105	At the end of this paper study students will
	Animal Sciences I	understand the relevance. basic concepts and
		functions of animals and animal systems. basic
		physiology as can be utilized for understanding

		advanced concepts later in the course. Main goal of
		this paper is to understand the basic concepts and
		approaches to study animal biology. To understand
		about alternates for animal biological material as
		can be utilized to understand the structure and
		functions of biological systems.
	BBt-106	This paper presents basic concepts and functions of
	Plant Sciences I	plants and plant systems, Plant body parts and its
		structures in detail.
	BBt-107	The main outcome of this paper is to understand the
	Microbiology I	relevance and basic concepts of microbiology, to
		understand the classification, physiology and
		importance of microbes and to understand the
		health-care implications of microbes.
	BBt-108	At the end of this paper students will understand the
	Biomathematics	relevance, basic concepts and theories statistics.
	and	They will know to utilize the knowledge on
	Biostatistics-I	relevance, basic concepts and theories of statistics
		as can be applied to life sciences. Learning outcome
		are to understand statistics concepts, theories and
		formulae, to utilize the bio-mathematics and
		biostatistics tools for applications in the areas of life
		sciences in general and human health in particular.
BSc. BT SY-	Bb- 211	This course presents the way characters get
Semester-I	A Genetics &	transferred through generations and methods to
	B Immunology	analyze and modify them. Students will understand
		the concept of genes and their behavior. On
		successful completion of the subject the student will
		understood the Basic genetics and their role. This
		course presents the basic defense mechanism of
		animals.
		On successful completion of the subject
		Immunology, the student will understand:
		Immunity, Antigen, Antibody, Cells of immune

		system and their function and regulations
	Bb- 212	This course presents the types and structural details
	Cell Biology	of the basic unit by which all the living things are
		made of (the cell). This will helpful to make the
		student to understand the concept of cell and their
		activities. This course presents the types and
		structural details of the basic unit by which all the
		living things are made of (the cell). The concept of
		cell and their activities and molecular signaling is
		the aim of this subject.
	Bb- 213	This course presents the Study and the Management
	Environmental	of the Environment. Ecology and Conservation of
	Biology and	the Environment is main output of this. On
	Biotechnology	successful completion of the subject the student will
		understood Ecosystem, energy flow and Uses and
		values of Biodiversity
BSc. BT SY-	Bb- 221	This course presents the genetics at molecular level
Semester II	Molecular biology	On successful completion of the subject the student
		should have understood the molecular aspects of
		Molecular biology.
	Bb- 222	The specific objectives of this course are to expose
	Animal and Plant	students to the topics such as to Summarize the
	development	role of each cell structure in plant and animal
		development, to evaluate the importance of various
		plant and animal tissues in development, to
		Summarize the contribution of each organ within
		the plant and animal body. This paper also useful to
		evaluate the stages of plant and animal growth and
		development, its structural and functional
	_	organization.
	Bb- 223	At the end of this paper students will learn to
	Scientific writing	Understand the science writing and editing process
	and communication	and be able to write a variety of technical
		documents in an acceptable level of Standard

		American English and to write technical and
		American English and to write technical and
		workplace documents by applying the appropriate
		categorical modes of rhetorical composition.
	Bb- 224	Students will be able to demonstrate an
	Metabolic	understanding of fundamental biochemical
	Pathways	principles, metabolic pathways and the regulation of
		biochemical processes. They will be able to describe
		the three major ways cells regulate metabolic
		pathways, to describe the distinct metabolic pathways
		used by cells to harvest the energy stored in glucose
		under aerobic conditions and also know the specific
		locations of these pathways in a generalized
		eukaryotic cell. This subject's main outcome is to
		understand the chemical relationship between the
		glucose molecules used by cells as fuel and the carbon
		dioxide generated by the same cells as waste.
BSc. BT	Bb-331	This subject introduces students to microbial
TY-	Microbial	biotechnology, the use of microbes to generate
Semester I	Biotechnology	useful products or to degrade wastes
		(bioremediation). Examples include the microbial
		production of enzymes (e.g. amylase), antibiotics
		(e.g. penicillin) or hormones (e.g. human insulin),
		and the development of microbial strains that are
		highly efficient at catabolising natural organic
		compounds or synthetic chemical
		compounds. Microbial biotechnology overlaps with
		the recently developing field of designer bacteria
		the so-called 'synthetic microbiology' where large
		sections of a microbial genome are engineered in
		order to optimize the metabolism for specific
		nurnoses
	Bh 222	This course presents the application of Dients and
	DU-332 Diant and animal	animals in Piotochnology Student will understand
		annuals in Diotechnology. Student will understand
	tissue culture	usage of Plant and Animal products and exploitation

		of them in Biotechnology. On successful
		completion of the subject, the student should have
		understood: Crop development, Callus culture,
		Biotechnological applications of plants, Animal
		tissue culture, Animal products, production &
		improvement of them
	Bb- 333	This course presents the principles Components of
	Biodiversity &	Biodiversity (Ecosystem, Genetic and Species
	Systematics	diversity) - Assigning values to biodiversity -
		Species concepts - Animal diversity: (Distribution,
		inventory, species richness) - Biodiversity Hotspots
		(Western Ghats, Indo-Burma region).
BSc. BT	Bb-341	This paper presents the basics of fermentation
TY-	Large scale	technology, media components as applied to lab
Semester II	Manufacturing	scale, pilot scale and industrial scale upstream and
	process	downstream processing. This paper is introduced to
		acquire requisite skills for the design and
		development of bioreactors, production
		optimization, and preparation of sterile base
		materials for downstream processing. On successful
		completion of the course the students should have
		understood the basics of fermentation technology
		and learnt the concept of screening, optimization
		and maintenance of cultures.
	Bb- 342	Upon completion of this course, the students will be
	Biochemical and	able to disciplinary knowledge and understanding of
	biophysical	biochemistry, structure and function of biological
	techniques	molecules. Students will learn about various
		membranes, their properties and appropriate uses.
		They will understand the concept of dialysis and
		reverse dialysis techniques, lyophilization
		techniques along with their application. They will
		be able to assess the suitability of chromatographic
		techniques for solving specific bioanalytical

	problems	and	critically	apply	the	knowledge	for
	biomolecu	iles s	eparation.				

Course: MSC BIOTECHNOLOGY		Outcomes		
Course	Course code and	Learning outcomes		
M.Sc. BT FY- Semester-I	MBT-101 Advanced Biological Chemistry MBT- 102 Cell & Molecular Biology	Students will acquire a sound background of latest methods used in biochemistry for purification of enzymes, isolation and characterization of proteins, nucleic acids, etc. Students will also develop practical skills related to applications of microscopy, labeling DNA, proteins and whole cells and their applications in biochemistry research. The students will get equipped with the latest techniques used in analysis of biomolecules and this will help them in undertaking further research in the area of biochemistry in any research/industrial institution. Cell biology subject presents the types and structural details of the basic unit by which all the living things are made of (the cell). Main goal of this is to make the student to understand the concept of cell and their activities. This course presents the types and structural details of the basic unit by which all the living things are made of (the cell). Molecular Biology course presents the genetics at molecular level. On successful completion of the subject the student should have understood the molecular aspects of Molecular biology.		
	MBT- 103 Genetics & Immunology	This course presents about Section culture and maintenance, Identification of Mutants - Physical and Chemical Methods, Experiments to determine Mendel's law, Monohybrid and dihybrid cross using plants, Sex chromatin (buccal smear) and Skill Based		

		Subject.
		Immunology subject presents the basic defense mechanism of animals. Main aim of the subject is to make the student to understood the concept immunology .On successful completion of the subject the student will understood: Immunity, Antigen, Antibody, Cells of immune system and their function and regulation
	MBT-105	At the end of the course the students will be able to,
	Environmental	Apply the concepts of Biotechnology in
	Biotechnology	Environmental Management, and Describe the concept of pollution management, Waste management and global warming problems.
M.Sc. BT	MBT-201	This course presents the mechanism of gene
FY-	Genetic	manipulation Concept of gene manipulation and gene
Semester-II	Engineering	transfer technologies are the main points in this syllabus. On successful completion of the subject, the student should have understood: Manipulation of genes, Transfer techniques, Expression systems and methods of selection.
	MBT-202 Bacteriology and Virology	Bacteriology involves the identification, classification, and characterization of various bacterial species. Virology is the study of viruses, complexes of nucleic acids and proteins that have the capacity for replication in animal, plant and bacterial cells. Students will know about diagnosis, management and prevention of infection.
	MBT-203 Plant Biotechnology	This course presents the application of Plants in Biotechnology. Usage of Plant products and exploitation of them in Biotechnology students. On successful completion of the subject, the student should have understood: Crop development, Callus culture, Biotechnological applications of plants.

	MBT-205 Clinical Research, Data Base management, & IPR	Students will understand the importance for measuring and obtaining the safety and data necessary for seeking marketing approval of drugs and devices. Will also know to IPRs role in the innovation process and managements of required documents. Upon completion of the course the student shall be able to have gained knowledge and understanding of what is involved in the design of a database. They will have gained knowledge and understanding of the models used for structuring data in database system and also able to implement a database and report on the process
M.Sc. BT SY- Semester- III	BT 301 Animal Biotechnology Biotechnology Bioprocess engineering &Fermentation Technology	 This course will describe to students about the limitations and challenges facing the animal industries and disciplines, various biotechnologies available to the animal related fields, Explain how developments in biotechnology may have applications in those fields. Students will learn different types of fermentation process, strain improvement methods and isolation of industrial important microorganisms, Different recovery process of the final product formed, Fermenters, design of fermenters and Application of fermentation.
	BT 303 Data Base Management and IPR in Biotechnology	The paper will describes the management and sharing of all data and code associated with the grant, including software dissemination and release schedule, source code development and open source licensing, software documentation, reproducible framework and data annotation and dissemination. IPR will provide knowledge that how health care companies with a means to protect their claim to and ownership of these assets through common law, state law or federal law.

	1	
	BT 304	On the completion of this paper students will able to
	Advanced Genetics	demonstrate and apply knowledge of contemporary
		areas of molecular genetics and biotechnology, and
		the challenges faced, to Illustrate and explain how
		transgenic organisms are produced via genome
		manipulation across a range of species. They will
		also learn source, synthesize and critically analyse
		literature to form the basis of a project,
		Independently design and implement experimental
		approaches to solve a research problem in genetics
		and biotechnology, to demonstrate proficiency in
		molecular genetics laboratory techniques, in
		problem-solving and experimental design, and in data
		collection, analysis, interpretation and presentation.
	BT 305	This paper useful for students to learn the basic
	Bioinformatics	concepts of Bioinformatics and its significance in
		Biological data analysis, Describe the history, scope
		and importance of Bioinformatics and role of internet
		in Bioinformatics. This will explain about the
		methods to characterize and manage the different
		types of Biological data Classify different types of
		Biological Databases.
M.Sc. BT	BT 401	This paper presents the basics of: mapping, Genome
SY-	Genomics and	sequencing, Genome sequence assembly: Base
Semester-	Proteomics	calling and assembly programs, Genome annotation:
1V		Gene ontology, Automated genome annotation,
		Annotation of hypothetical proteins and Genome
		economy. Comparative genomics: Whole genome
		alignment, Finding a minimal genome, Lateral gene
		transfer, Within-genome approach and Gene order
		and Gene.
	BT 402	This course presents the principles and applications
	Biochemical and	of Biotechnology explaining the biomolecules and
	biophysical techniques	applications of biophysical methods. Main goal is to

	enable the students to learn the immuno techniques
	and radio labeling techniques. On successful
	completion of the course the students will be aware
	of 1. Microscopic techniques 2. Electro physiological
	methods. 3. Biomolecules structure determination
	using X-ray diffraction.
BT 405	This paper will make the students to understand that
Stem Cell	how the Stem cells are able to renew themselves
Technology and	through mitotic cell division and differentiate into a
Regenerative	diverse range of specialized cell types also their use
Medicines	in therapy and regenerative medicine as well as in
	toxicity screening and drug development is widely
	anticipated.